
EmpericalPatternR: Forest Stand Pattern Simulation
Source:R/EmpericalPatternR-package.R
EmpericalPatternR-package.RdSimulates realistic forest stand patterns using simulated annealing optimization to match empirical targets for spatial patterns, canopy structure, species composition, and fire behavior metrics.
Main Functions
**Simulation:**
simulate_stand: Run complete stand simulationsimulate_mortality: Add post-disturbance mortality
**Stand Metrics:**
calc_stand_metrics: Compute all stand-level metricscalc_tree_attributes: Calculate tree attributes from DBHcalc_canopy_cover: Canopy cover with overlap handling
**Allometric Equations:**
calc_crown_radius: Crown radius from DBHcalc_height: Tree height from DBHcalc_crown_base_height: Crown base heightcalc_canopy_fuel_mass: Foliage biomassget_default_allometric_params: Default pinyon-juniper parametersget_ponderosa_allometric_params: Ponderosa pine parameters
**Perturbation Operations:**
perturb_move: Move tree to new locationperturb_species: Change tree speciesperturb_dbh: Adjust tree diameterperturb_add: Add new treeperturb_remove: Remove treeperturb_add_with_nurse: Add tree with nurse effect
Optimization Weight Guidelines
All optimization weights range from 0-100:
- 0
Ignore this metric completely
- 1-20
Low priority - let it emerge from other constraints
- 20-50
Moderate priority - balance with other metrics
- 50-80
High priority - actively optimize toward target
- 80-100
Critical - dominates optimization
Customization
**Allometric Equations:**
Create custom allometric parameters for your forest type:
my_params <- list(
crown_radius = list(SPECIES = list(a = 0.5, b = 0.10)),
height = list(SPECIES = list(a = 20, b = 0.03)),
crown_ratio = list(SPECIES = list(a = 0.70, b = 0.10)),
crown_mass = list(SPECIES = list(a = 0.20, b = 2.1))
)**Target Parameters:**
Modify targets to match your field data:
Examples
Complete working examples in inst/examples/:
example_01_pinyon_juniper.R- P-J woodland (Huffman 2009)example_02_ponderosa_pine.R- Ponderosa pine forest
References
**Empirical Data:**
Huffman et al. (2009). A comparison of fire hazard mitigation alternatives in pinyon-juniper woodlands of Arizona. Forest Ecology and Management 257:628-635.
**Allometric Equations:**
Grier et al. (1992). Biomass distribution and productivity of Pinus edulis-Juniperus monosperma woodlands. Forest Ecology and Management 50:331-350.
Miller et al. (1981). Biomass of singleleaf pinyon and Utah juniper. USDA Forest Service Research Paper INT-273.
**Crown Fire Methods:**
Van Wagner (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research 7:23-34.
Scott & Reinhardt (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service Research Paper RMRS-RP-29.
Author
Maintainer: Andrew Sánchez Meador andrew.sanchezmeador@nau.edu